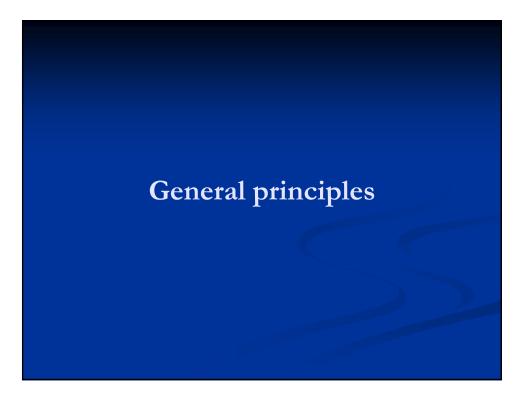
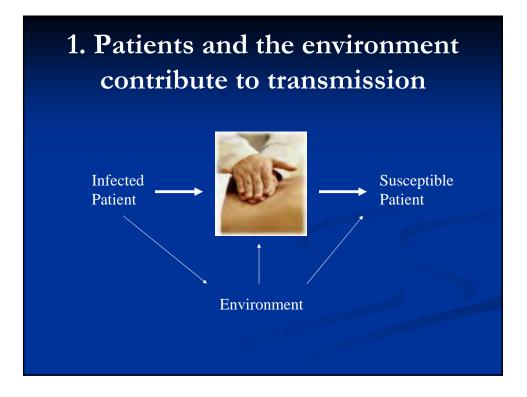

Environmental Disinfection for Control of Healthcare-Associated Pathogens

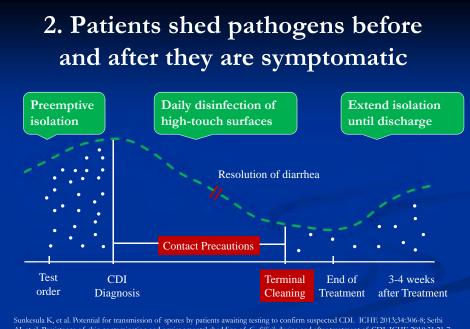

Curtis Donskey, M.D.


Louis Stokes VA Medical Center Cleveland, Ohio

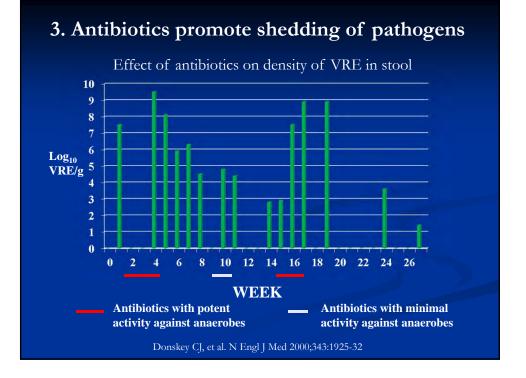
Objectives

- To be aware of how contaminated surfaces contribute to pathogen transmission
- To learn strategies to improve environmental disinfection in healthcare facilities
- To appreciate challenges for achieving effective environmental disinfection in long-term care settings

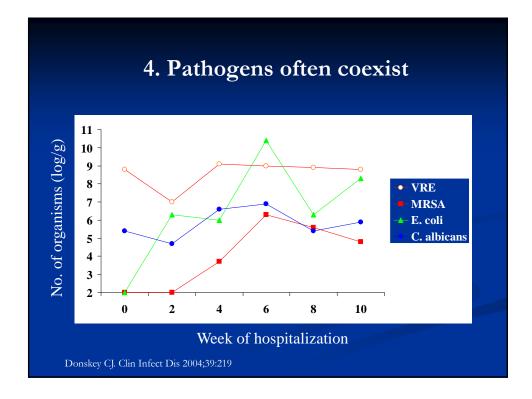
Contamination of hands with MRSA after contact with:

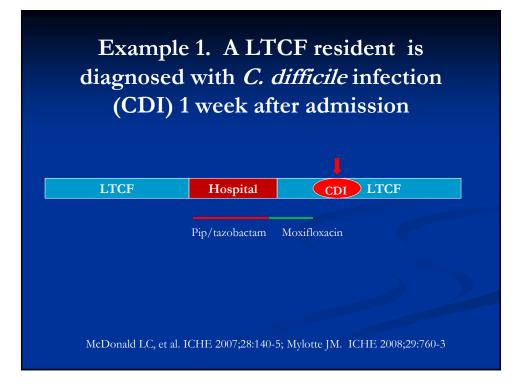

Patient

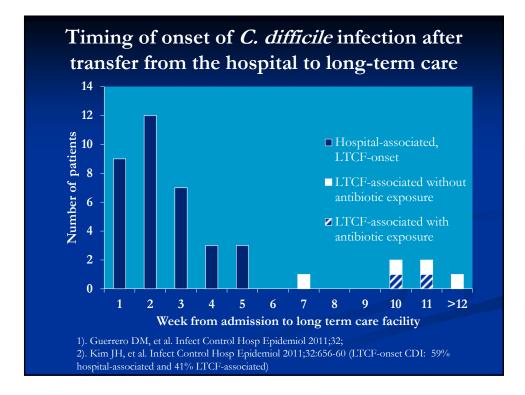
Environment

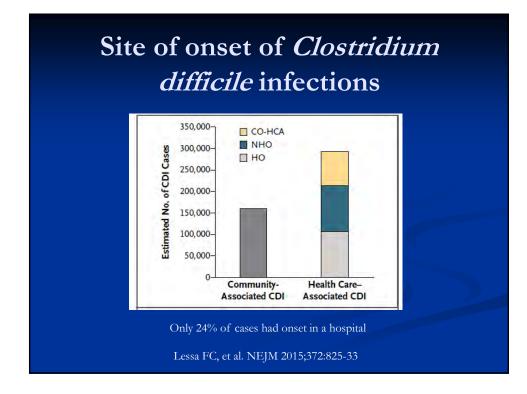


Donskey CJ, Eckstein B. N Engl J Med 2009;360:e3; Stiefel U, et al. Infect Control Hosp Epidemiol 2011;32:185-7






Sunkesula K, et al. Potential for transmission of spores by patients awaiting testing to confirm suspected CDI. ICHE 2015;34:306-8; Sethi AJ, et al. Persistence of skin contamination and environmental shedding of *C. difficile* during and after treatment of CDI. ICHE 2010;31:21-7; Kundrapu S, et al. A randomized trial of daily disinfection of high-touch surfaces in isolation rooms to reduce contamination of healthcare workers' hands. ICHE 2012;33:1039-42.


<section-header><figure><figure>

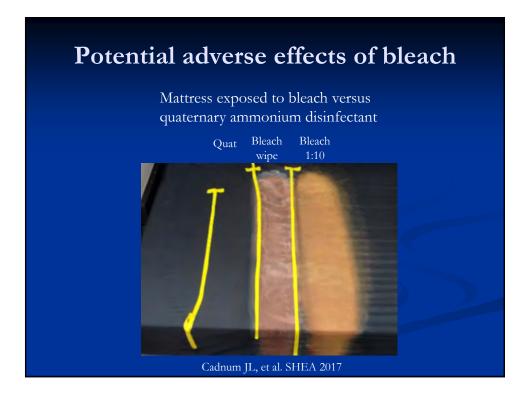
Hospital	LT	CE
8 h	< 30 days	> 30 days
Hospital-onse Hospital-associa		LTCF-associated
	uted – onset more than 30 d no CDI in the previous	

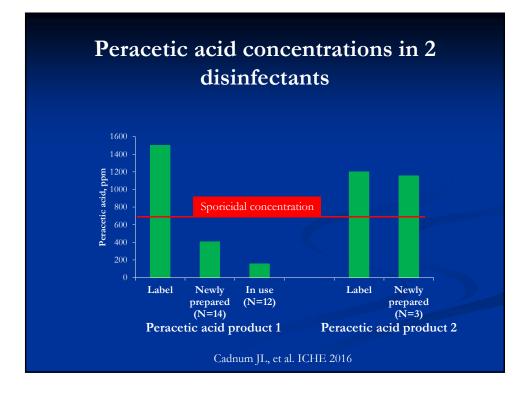
SHEA Position Paper: *C. difficile* in LTCFs for the elderly

- Appropriate and prompt diagnostic testing (AII)
- Antimicrobial stewardship (AII)
- Education of providers about CDI (BIII)
- Environmental control measures
 - Use disposable single-use thermometers (AII)
 - Dedicated equipment for CDI patients (BIII)
 - Environmental disinfection with sporicidal agents (BII)
 - Private room for CDI patients with incontinence (BIII)

Simor AE, et al. SHEA Position Paper: *C. difficile* in long-term care facilities for the elderly. Infect Control Hosp Epidemiol 2002;23:696-703

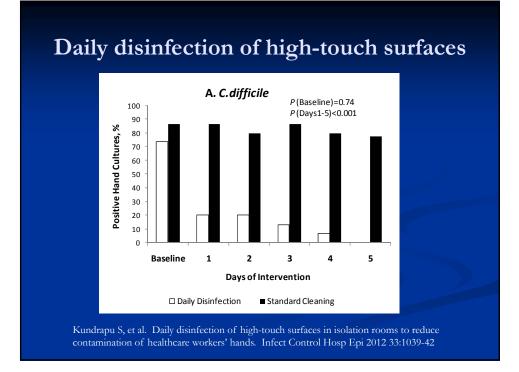
Which disinfectants kill *C. difficile* spores?

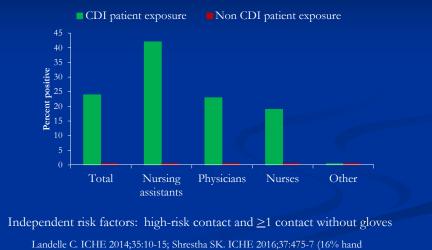

- 1). Bleach
- 2). Quaternary ammonium compounds (e.g., lysol, Virex)
- 3). OxyCide (peracetic acid)
- 4). Oxivir (accelerated/improved hydrogen peroxide)



Substitution of hypochlorite for non-sporicidal cleaning agents to control *C. difficile*

Ref	Setting	Effect on CDI rates	Monitoring to ensure efficacy of disinfection
1	Medical Ward	Outbreak ended	Surface contamination reduced to 21% of initial levels
2	Bone marrow transplant (BMT) unit, Medical Ward, ICU	Significant decrease on BMT unit, but not on the other 2 wards	No
3	2 medical wards	Decreased on 1 of 2 wards	No decrease in prevalence of environmental contamination with hypochlorite use
4	Medical and surgical ICUs	Decreased on both units	No
5	3 hospitals	48% decrease in prevalence density of CDI	No
6	2 medical wards	85% decrease in hospital acquired CDI	Yes (ATP bioluminescence)

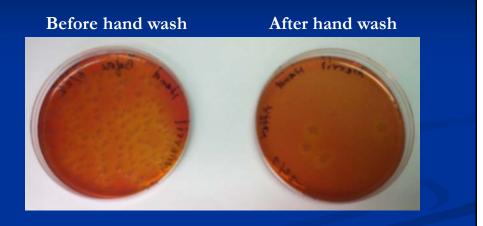

Katz G. Am J Epidemiol 1988;127:1289-94; 2). Mayfield JL. Clin Infect Dis 2000;31:995-1000;
Wilcox MH. J Hosp Infect 2003;54:109-114; 4). McMullen KM. Infect Control Hosp Epidemiol 2007;28:205-7; 5).
Hacek DM. Am J Infect Control 2010;38:350-3; 6). Orenstein R. Infect Control Hosp Epidemiol 2011;32:1137-9



Why is daily cleaning recommended?

- An elderly person in your household develops diarrhea that is diagnosed as an infectious viral illness. There are young children in the household who interact regularly with the ill person. Do you:
- Wait 10 days until the illness has completely resolved before cleaning the bathroom and other objects that the person contacts
- 2. Disinfect surfaces daily or after each use of the bathroom to prevent transmission

Contamination of hands with *C. difficile* spores despite contact precautions


contamination after care of CDI patients); Tomas ME. AJIC 2015;43:1366-7 (hand contamination decreased after an intervention to improve PPE technique)

Technical difficulty

Daily cleaning?

Patient hand washing to reduce spore contamination

Kundrapu S, et al. A Randomized Trial of Soap and Water Hand Wash Versus Alcohol Hand Rub for Removal of *C. difficile* Spores from Hands of Patients. ICHE 2014;35:204-6; Jury LA, et al. Effectiveness of routine patient bathing to reduce the burden of spores on skin of patients with CDI. ICHE 2011;32:181-4

Example 2. Three LTCF residents and 2 staff members develop nausea and vomiting

- 1). *C. difficile* infection
- 2). Norovirus
- **3**). Staphylococcal food poisoning

Environmental cleaning for Norovirus outbreaks

- Increase frequency of routine cleaning and disinfection of isolation rooms, shared equipment, and high traffic areas (2-3 times/day)
- Clean from areas of low to high contamination
- Use an EPA-approved disinfectant
- Consider changing privacy curtains upon discharge and transfer

cdc.gov; Kambhampati A. J Hosp Infect 2015;89:296-301; Barker JD. J Hosp Infect 2004;58:42-49 (surfaces cleaned with a detergent spread Norovirus to uncontaminated sites)

Use of benign surrogate markers to study virus transmission in LTCFs

<section-header><section-header><section-header><section-header>

Dissemination of a viral DNA surrogate marker on a LTCF ward

	Time after	Time after marker inoculation on TV remote			
	2 hours	1 day	2 days	3 days	
LTCF resident's hands	+	-	-	-	
Inside Room					
Personal Items	+	+	-	+	
Surfaces	+	+	+	+	
Bathroom	+	+	-	-	
Outside Room on unit					
Nursing stations	-	+	-	+	
Staff bathroom	-	+	-	-	
Recreation area/cafeteria	+	-	-	+	
Laundry Room	+	-	-	-	
Portable equipment	-	-	+	+	
Smoking area outside building	-	-	-	+	

Alhmidi H, et al. Dissemination of a Nonpathogenic Viral DNA Surrogate Marker from Hig Touch Surfaces in Rooms of LTCF Residents. AJIC in press

Control of the spread of a benign virus in a LTCF using hygiene protocols

- The benign virus bacteriophage MS2 inoculated onto hands of 1 staff member
- Comparison of environmental and staff hand contamination before and after an intervention
- Intervention: education, increase availability of hand sanitizer for staff and patients and disinfectant wipes

Sassi HP, et al. Control of the spread of viruses in a LTCF using hygiene protocols. AJIC 2015;43:702-6

Control of the spread of a benign virus in a LTCF using hygiene protocols

	Pre- intervention	Post- intervention			
Percent contamination of fomites	52/105 (49%)	39/106 (32%)			
Mean virus particles recovered					
Fomites	1,100,000	820			
Hands	1500	2			
Sassi HP, et al. Control of the spread of viruses in a LTCF using hygiene protocols. AJIC 2015;43:702-6					

Does the environment contribute to spread of respiratory viruses?

- Enveloped respiratory viruses (e.g., influenza, RSV) viable for hours to days on surfaces
- Respiratory viruses (e.g., influenza, RSV) can be recovered from surfaces and in some cases have been linked to transmission
- CDC: for influenza use standard cleaning and disinfection procedures

cdc.Gov Prevention strategies for seasonal influenza in healthcare settings; Boone SA, Gerba CP. Significance of fomites in the spread of respiratory and enteric viral disease. Appl Environ Microbiol 2007;73:1687-96; Hall CB, et al. Infectivity of RSV by various routes of inoculation. Infect Immunol 1981;33:779-783; Morens DM, Rash VM. Lessons from a nursing home outbreak of influenza A. ICHE 1995;16:275-80.

Paramyxovirus outbreak in a long-term care facility

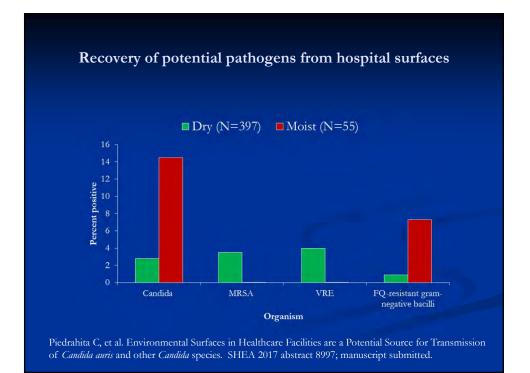
- RSV and human metapneumovirus outbreak on a dementia ward
- 30 of 41 (73%) residents and multiple personnel affected
- Lack of on-site testing delayed recognition
- Prevention of future outbreaks: active surveillance for cases during respiratory virus season

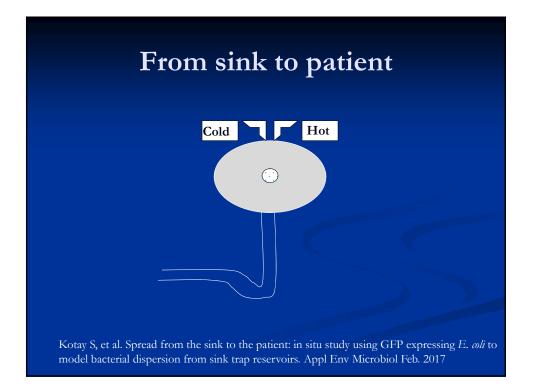
Schaeffer Spires S, et al. ICHE 2017:1-6

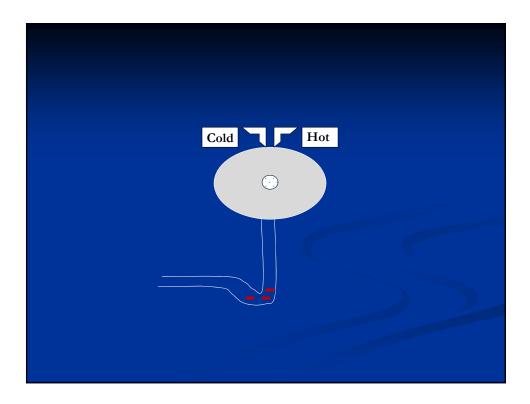
Example 3. Two LTCF residents are colonized with multidrug-resistant Pseudomonas. Which is increasingly linked to transmission?

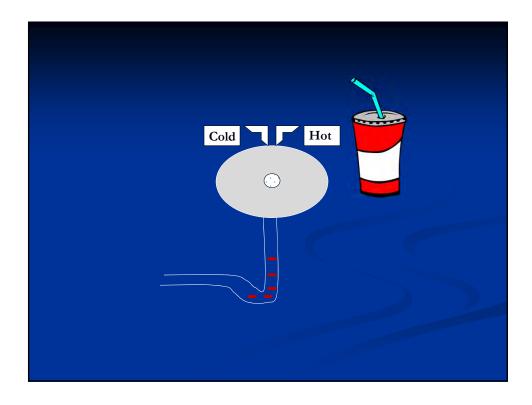
- A. Contaminated stool softener
- B. Contaminated sinks
- C. Physicians' ties
- D. Dirty laundry

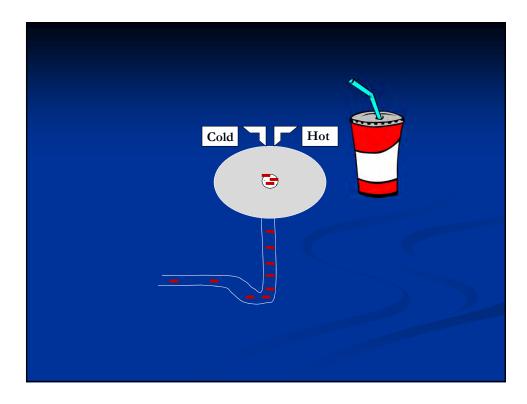
Example 3. Two LTCF residents are colonized with multi-resistant Pseudomonas. Which is increasingly linked to transmission?

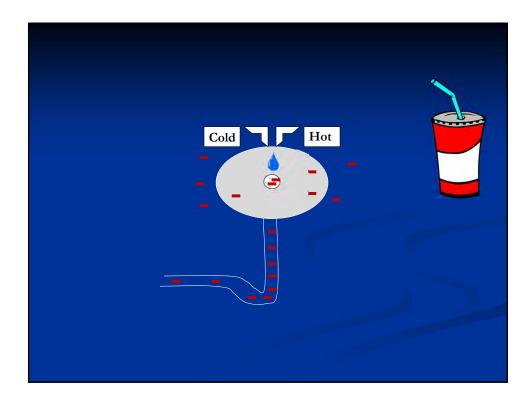

- A. Contaminated stool softener (Burkholderia)
- B. Contaminated sinks
- C. Physicians' ties
- D. Dirty laundry (Zygomycoses)


Marquez L, et al An outbreak of *Burkholderia cepacia* complex infections associated with contaminated liquid docusate. ICHE 2017;1-7; Cheng VCC, et al. Hospital outbreak of pulmonary and cutaneous zygomycosis due to contaminated linen items from substandard laundry. Clin Infect Dis 2016;62:714-20 (Hong Kong); Duffy J, et al. Mucormycosis outbreak associated with hospital linens. Pediatr Infect Dis J 2014;33:472-6 (Louisiana); ID Week 2016. Zygomycosis associated with contaminated laundry (*Rhizopus* spp. and Lichtheimia (Absidia) corymbifera)


Organisms linked to sinks


- Pseudomonas aeruginosa
- Klebsiella pneumoniae and K. oxytoca
- Enterobacter cloacae
- Elizabethkingia meninogoseptica
- Acinetobacter baumanii
- *Stenotrophomonas maltophilia*


Kanamori H, et al. Clin Infect Dis 2016;62:1423-35 (review on waterborne transmission in healthcare facilities); Hota S, et al. ICHE 2009;30:25-33; Ambrogi V, et al. J Hosp Infect 2016;92:27-9; Wolf I, et al. J Hosp Infect 2014;87:126-30; Roux D, et al. J Hosp Infect 2013;85:106-11; Zhou Z, et al. J Infect Chemother 2016; Aspelund AS, et al. J Hosp Infect 2016;94:13-20; Leitner E, et al. Antimicrob Agents Chemother 2015;59:714-16; Chapuis A, et al. Frontiers Microbiol 2016;7:1-9; Amoureux L, et al. Emerg Infect Dis 2017;23:304-7; Clarivet B, et al. Euro Surveill 2016;21; Knoester M, et al. Clin Microbiol Infect 2014;20:0207-0215; Vergara-Lopez S, et al. Clin Microbiol Infect 2013;19:E490-8; Fusch C, et al. Acta Paediatrica 2015;104:e344-e349; Lowe C, et al. Emerg Infect Dis 2012;18:1242-7;

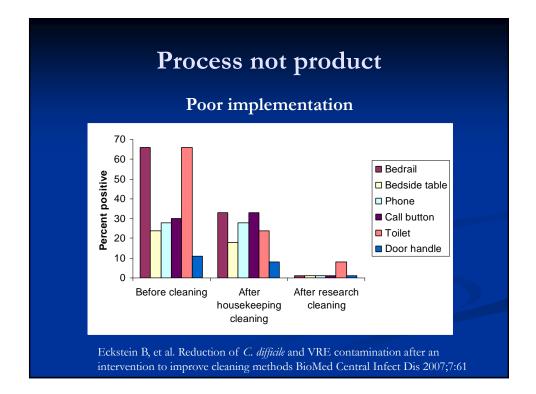


Improving room design to reduce risk for transmission from sinks

Before renovation

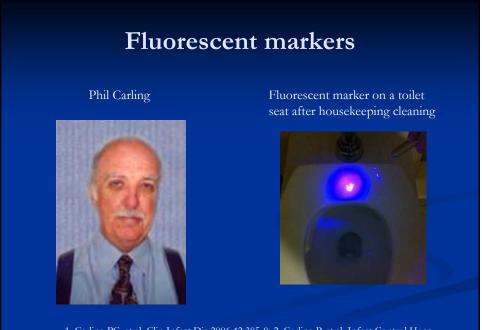
After renovation

Hota S, et al. Outbreak of multidrug-resistant *P. aeruginosa* colonization and infection secondary to imperfect intensive care unit room design. ICHE 2009;30:25-33.

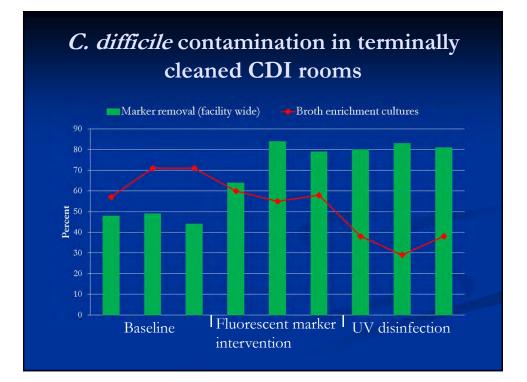

Strategies to improve environmental disinfection

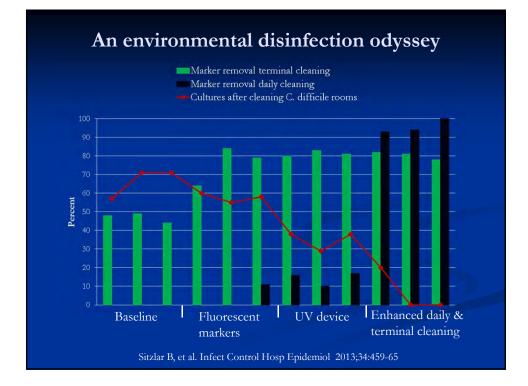
Improve standard cleaning and disinfection

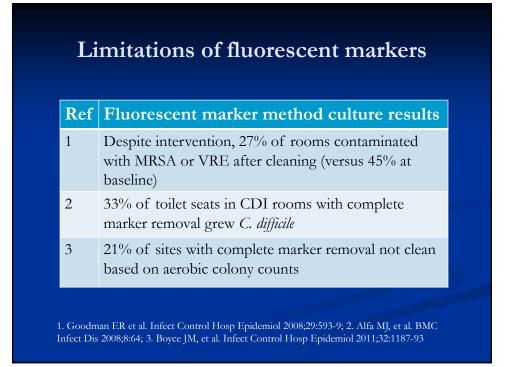
New technologies



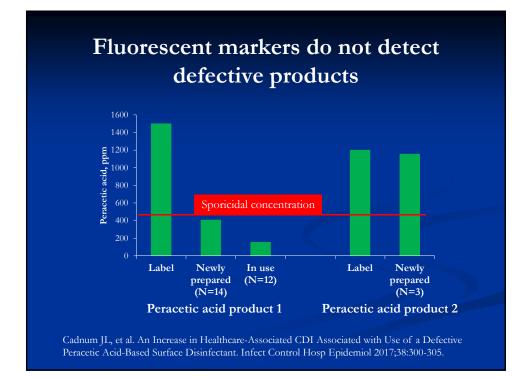
Environmental cleaning interventions


- Education
- Monitoring and feedback
- Standardized policies and procedures
- Recognition of environmental services personnel


Carling P. Am J Infect Control 2013;41:520-5; Havill NL. Am J Infect Control 2013;41:S26-S30

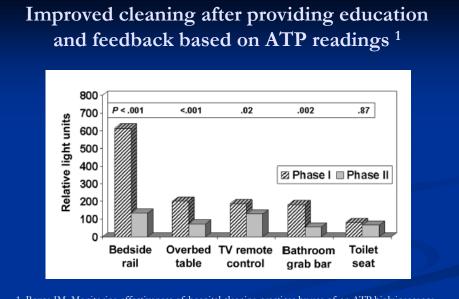


1. Carling PC, et al. Clin Infect Dis 2006;42:385-8; 2. Carling P, et al. Infect Control Hosp Epidemiol 2008;29:1035-41; 3. Carling P. Am J Infect Control 2013;41:520-525



Removal of marker may not correlate with cleaning of alternate sites on the same surface

<section-header><section-header><complex-block><complex-block><image><image>



ATP bioluminesence

- Quantitative measurement of organic material (bacteria, food, bodily secretions)
- Expressed as relative light units (RLUs)
- No established benchmark for defining clean
- ATP readings may correlate with aerobic colony counts ^{3, 5}
- Rapid results can be used to provide immediate feedback to personnel

1. Boyce JM. ICHE 2009;30:678-84; 2. Boyce JM. ICHE 2011;32:1187-93; 3. Luick L. Am J Infect Control 2013;41:751-2; 4. Amodio E, Dino C. J Infect Public Health 2014;7:92-8; 5. Huang Y. AJIC 2015;43:882-6

1. Boyce JM. Monitoring effectiveness of hospital cleaning practices by use of an ATP bioluinescence assay. ICHE 2009;30:678-84; 2. Branch-Elliman W. Direct feedback with the ATP luminometer as a process improvement tool for terminal cleaning of patient rooms. AJIC 2014;42:195-7

Automated UV-C Radiation Device

- Mobile, automated, easy to use
- Kills *C. difficile* spores (2-3 log reduction)
- ~1 hour for *C. difficile* rooms

Nerandzic MM. BMC Infect Dis 2010;10:197; Nerandzic MM. PLOS One 2010; Rutala WA, et al. Infect Control Hosp Epidemiol 2010;31:1025-31; Boyce JM, et al. Infect Control Hosp Epidemiol 2011;32:1016-28; Stibich M, et al. Infect Control Hosp Epidemiol 2011;32:286-8; Havill NL, et al. Infect Control Hosp Epidemiol 2012;33:507-12

Impact of UV-C radiation devices on healthcare-associated CDI

- Multiple quasi-experimental studies have reported reductions in CDI with UV-C¹⁻⁷
- Cluster randomized, multicenter, crossover study⁸
 - No decrease in CDI Incidence
 - Bleach: 30.4 cases/10,000 exposure days
 - Bleach+UV: 31.6 cases/10,000 exposure days

Miller R. AJIC 2015;43:1350-3; 2. Levin J. AJIC 2013;41:746-8; 3. Nagaraja A. AJIC. 4.
Vianna PG. AJIC 2016;44:299-303; 5. Haas JP. AJIC 2014;42:586-90; 6. Nagaraja A. AJIC 2015, July 6; 7. Folkert C. APIC Annual Meeting 2016 (UV used for 85% of all discharges; significant reduction in CDI on 3 UV-C wards in comparison to 3 control wards);
8. Anderson D, et al. ID Week 2015

Can we minimize transmission of pathogens while maintaining a "homelike" environment?

Summary

- Contaminated environmental surfaces are an important source for transmission of bacterial and viral pathogens
- Monitoring and feedback is essential in order to improve cleaning and disinfection
- Direct observation of practices is useful
- Monitoring and feedback can have a positive impact on EVS programs